返回首页 学校主页 院网旧版

|

English

一、基本情况

王秀荣,新葡萄京娱乐场手机版教授、博士生导师。主要从事植物营养生理、植物营养遗传和根系生物学方面的教学、科研和推广工作。主攻方向为作物养分高效的有益微生物共生研究。针对南方酸性土壤上养分效率低和酸铝毒,以及农田土壤重金属污染毒害问题,尝试利用有益微生物共生途径提高作物养分效率,以及耐酸铝和抗重金属毒害能力。近年来在国内外专业核心刊物上发表论文50多篇参与编写学术专著1部。获得国家发明专利2项,获得广东省科学技术奖二等奖1项。2012年入选广东省高等学校“千百十工程”第七批省级培养对象。

 

二、主要学术兼职

中国植物营养与肥料学会植物营养生物学专业委员会委员(2016-2021年)

 

三、教育经历

学习经历:

19947月,西北农林科技大学土壤与植物营养专业,获农学学士学位

19977月,新葡萄京娱乐场手机版作物营养与施肥专业,获农学硕士学位

200812月,新葡萄京娱乐场手机版植物营养学专业,获农学博士学位

进修经历:

20026-20036月,香港中文大学生物系,进行籼稻转基因的合作科研。合作者:Samuel S.M. Sun教授

20069-12月,澳大利亚阿德莱德大学(University of Adelaide地球与环境科学学院进行大豆与菌根共生作用方面的合作研究。合作者:Sally Smith 教授

20133-20143月,美国南达科塔州州立大学(South Dakota State University)生物与微生物系进行丛枝菌根共生系统中资源分配方面的合作研究。合作者:Heike Bücking 教授

 

四、工作经历

19977-20006月,新葡萄京娱乐场app,助教

20007-200611月,新葡萄京娱乐场app,讲师

200612-201111,新葡萄京娱乐场app,副教授、硕士生导师

201112-至今,新葡萄京娱乐场app,教授、博士生导师

 

五、招生方向

学术型博士:植物营养学

学术型硕士:植物营养生理与遗传;根系生物学;肥料学;作物营养与施肥

专业型硕士:植物营养

 

六、科研项目

1)根瘤菌与菌根促进作物高效利用磷的机制,国家重点研发计划项目子课题(项目号2017YFD0200200/2017YFD0200203),2017-2021,100万元,主持

2)菌根诱导表达的蔗糖转运蛋白调控大豆-菌根真菌共生系统中碳分配的机理研究,国家自然科学基金(31672237),2017-202072万元,主持

3)磷高效转基因大豆新品系培育,广东省省级科技计划项目(2016A020210067),2016-201815万元,主持

4GmPAP4GmPAP33调控大豆-AM共生体内磷再利用的生理和分子机制,国家自然科学基金(31372126),2014-201778万元,主持

5丛枝菌根真菌提高大豆耐酸铝能力的生理机制解析,广东省高等学校高层次人才项目(粤财教【2013246),2014-201625万元,主持

6)大豆紫色酸性磷酸酶基因家族参与磷高效利用的生理和分子机理解析,国家自然科学基金(30971853),2010-201233万元,主持

7)抗逆磷高效转基因大豆新品(种)系培育,农业部转基因生物新品种培育科技重大专项课题(2009ZX08004-007B),2009-2012114万元,主持

8)烤烟根系发育与养分吸收和烟叶品质形成的关系研究,云南省烟草专卖局(公司)科技项目(06A05)2007-200910万元,主持

 

七、论著一览

1)        Qin J, Wang H, Cao H, Chen K, Wang X*. 2020. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean. Mycorrhiza

2)        Li CC, Zhou J, Wang X*, Liao H*. 2019. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant, Cell & Environment, 42: 2015-2027

3)        Zhao S, Chen A, Chen C, Li C, Xia R, Wang X*. 2019. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Physiologia Plantarum, 166: 712-728

4)        Kafle A, Garcia K, Wang X, Pfeffer PE, Strahan GD, Bücking H. 2019. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. Plant, Cell & Environment, 42: 270-284

5)        Cui GJ, Ai SY, Chen K, Wang XR*. 2019. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression. Ecotoxicology and Environmental Safety, 171: 231-239

6)        Li CC, Li CF, Zhang HY, Liao H, Wang X*. 2017. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Physiologia Plantarum, 159(2): 215-227

7)        Wang G, Sheng L, Zhao D, Sheng J*, Wang X* and Liao H. 2016. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Frontiers in Plant Science, 7:1901. doi: 10.3389/fpls.2016.01901

8)        Liu X, Zhang C, Wang X, Liu Q, Yuan D, Pan G, Sun SSM, Tu J. 2016. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene. BMC Plant Biology, 16: 147. DOI: 10.1186/s12870-016-0837-x

9)        Wang X, Zhao S, Bücking H. 2016. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphorus efficiency. Annals of Botany, 118 (1): 11-21

10)    Zhang S, Zhou J, Wang G, Wang X*, Liao H. 2015. Role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Applied Microbiology and Biotechnology (IF5=3.81). 99:10225–10235

11)    Xie J, Zhou J, Wang XR*, Liao H. 2015. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system. Journal of Integrative Plant Biology, 57: 477-485. doi: 10.1111/jipb.12243

12)    Li CF, Zhang HY, Wang XR*, Liao H. 2014. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. Plant Cell Reports, 33:1921-1932

13)    Zhou J, Xie JN, Liao H, Wang XR*. 2014. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiologia Plantarum, 150(2):194-204

14)    Tian J, Wang XR, Tong YP, Chen XP, Liao H. 2012. Bioengineering and management for efficient phosphorus utilization in crops and pastures. Current Opinion in Biotechnology, 23:1-6

15)    Li CC, Gui SH, Yang T, Walk T, Wang XR*, Liao H. 2012. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Annals of Botany, 109: 275-285

16)    Wang XR, Pan Q, Chen FX, Yan XL, Liao H. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza, 21: 173-181

17)    Wang XR, Shen JB and Liao H. 2010. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Science, 179: 302-306

18)    Wang XR, Yan XL and Liao H. 2010. Genetic improvement for phosphorus efficiency in soybean: a radical approach. Annals of Botany, 106: 215–222

19)    Wang XR, Wang YX, Tian J, Lim BL, Yan XL and Liao H. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 151: 233-240.

20)    Cheng FX, Cao GQ, Wang XR, Zhao J, Yan XL and Liao H. 2009. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China. Chinese Science Bulletin, 54(3): 412-420.

 

九、联系方式

单位电话:020-85281829Email: xrwang@scau.edu.cn


寄语学生

一分耕耘一分收获!